Παρασκευή 8 Μαρτίου 2013

 Γιόχαν Φρίντριχ Γκάους

Ο Γιόχαν Καρλ Φρίντριχ Γκάους (Johann Carl Friedrich Gauss, στη γερμανική συνήθως γράφεται ως Gauß) (30 Απριλίου 1777 – 23 Φεβρουαρίου 1855) ήταν Γερμανός μαθηματικός που συνεισέφερε σε πολλά ερευνητικά πεδία της επιστήμης του, όπως η θεωρία αριθμών, η στατιστική, η μαθηματική ανάλυση, η διαφορική γεωμετρία, αλλά και συναφών επιστημών, όπως η γεωδαισία, η αστρονομία και η φυσική (ηλεκτροστατική, οπτική, γεωμαγνητισμός). Αποκλήθηκε «ο πρίγκηψ των μαθηματικών» και ο «μεγαλύτερος μαθηματικός μετά τον Αρχιμήδη και τον Ευκλείδη». Ο Γκάους υπήρξε ίσως ο σημαντικότερος Γερμανός μαθηματικός όλων των εποχών και ένας από τους δύο ή τρεις σπουδαιότερους των νεότερων χρόνων (μετά την αρχαιότητα) (Waldo Dunnington: "The Sesquicentennial of the Birth of Gauss", Scientific Monthly, τόμος 24, σ. 402-414).
Ο Γκάους ήταν αυτό που αποκαλείται «παιδί-θαύμα» και υπάρχουν αρκετές ιστορίες για τις εκπληκτικές του ικανότητες ως νηπίου, ενώ οι πρώτες μεγάλες μαθηματικές ανακαλύψεις του χρονολογούνται από την εφηβεία του. Σε ηλικία 21 ετών είχε ολοκληρώσει το κύριο έργο του στα καθαρά μαθηματικά, το Disquisitiones Arithmeticae, (= «Αριθμητικές Έρευνες», 1798, εκδόθηκε το 1801). Αυτό το έργο διαδραμάτισε θεμελιώδη ρόλο στην εδραίωση της θεωρίας αριθμών ως αυτοδύναμου κλάδου των μαθηματικών και τη σημάδεψε μέχρι τις μέρες μας.

Τα πρώτα χρόνια

Ανδριάντας του Γκάους στη γενέτειρά του, το Μπράουνσβαϊγκ
Ο Γκάους γεννήθηκε στο Μπράουνσβαϊγκ (Braunschweig), στο τότε δουκάτο Brunswick-Lüneburg και σήμερα μέρος της Κάτω Σαξονίας, στη Γερμανία. Οι γονείς του ήταν φτωχοί εργάτες και δεν είχαν άλλα παιδιά. Οι ιστορίες για την πρώιμη ιδιοφυΐα του ως μικρό παιδί είναι όλες αναπόδεικτες. Σύμφωνα με μία, το ταλέντο του πρωτοεμφανίσθηκε σε ηλικία τριών ετών, όταν διόρθωσε χωρίς χαρτί και μολύβι ένα λάθος που είχε κάνει ο πατέρας του στο χαρτί ενώ έκανε υπολογισμούς για τα οικονομικά της οικογένειας.
Η γνωστότερη ίσως ιστορία αφορά την απόπειρα του δασκάλου του στο δημοτικό, του J.G. Büttner, να απασχολήσει τους μαθητές του σε μια κενή ώρα βάζοντάς τους να προσθέσουν όλους τους ακεραίους από το 1 ως το 100. Ο μικρός Γκάους βρήκε το σωστό άθροισμα σε λιγότερο από 1 λεπτό, εκπλήσσοντας τόσο τον δάσκαλο όσο και τον βοηθό του Martin Bartels. Ο Γκάους αντιλήφθηκε ότι η πρόσθεση κατά ζεύγη από τις δύο άκρες αυτής της σειράς των αριθμών έδινε πάντα το ίδιο άθροισμα: 1 + 100 = 101, 2 + 99 = 101, 3 + 98 = 101, κ.ο.κ., οπότε για ένα ολικό άθροισμα 50 × 101 = 5050 (βλ. αριθμητική σειρά). Ο J. Rotman πάντως γράφει στο βιβλίο του A first course in Abstract Algebra ότι πιστεύει πως αυτό το περιστατικό δεν συνέβη ποτέ.
Ο πατέρας του Γκάους τον προέτρεπε να ακολουθήσει το επάγγελμά του και να γίνει χτίστης ξύλινων σπιτιών. Δεν συμφωνούσε να μάθει ο Καρλ μαθηματικά και επιστήμες. Σε αυτή την προσπάθεια, ο Γκάους είχε κυρίως την υποστήριξη της μητέρας του και μετά του Δούκα του Brunswick-Lüneburg, που του έδωσε μια υποτροφία για να σπουδάσει στο Collegium Carolinum (το σημερινό Πολυτεχνείο του Μπράουνσβαϊγκ), όπως και έγινε, από το 1792 ως το 1795. Στη συνέχεια, σπούδασε στο Πανεπιστήμιο του Γκέτινγκεν από το 1795 ως το 1798. Κατά τη διάρκεια των σπουδών του, ο Γκάους πέτυχε να ανακαλύψει εκ νέου και από μόνος του πολλά ήδη γνωστά σημαντικά θεωρήματα. Η πρώτη του νέα ανακάλυψη ήταν το 1796, όταν απέδειξε ότι οποιοδήποτε κανονικό πολύγωνο του οποίου ο αριθμός πλευρών είναι πρώτος αριθμός Φερμά (και, συνεπώς, και όλα τα πολύγωνα με αριθμό πλευρών γινόμενο ξεχωριστών πρώτων αριθμών Φερμά και μιας δυνάμεως του 2) μπορεί να κατασκευασθεί με κανόνα και διαβήτη. Αυτή ήταν μια σημαντική ανακάλυψη σε ένα βασικό πεδίο των μαθηματικών. Τα προβλήματα «κατασκευής» απασχολούσαν τους μαθηματικούς από την Αρχαία Ελλάδα και η ανακάλυψη αυτή τελικώς οδήγησε τον Γκάους να επιλέξει μια σταδιοδρομία στα μαθηματικά αντί για τη φιλολογία. Ευχαριστήθηκε τόσο από αυτή την ανακάλυψη, ώστε ζήτησε να χαραχθεί πάνω στον τάφο του ένα κανονικό δεκαεπτάγωνο. Ο τεχνίτης αρνήθηκε, δηλώνοντας ότι η δύσκολη αυτή κατασκευή θα φαινόταν σχεδόν σαν ένας κύκλος.
Η σελίδα τίτλου του βιβλίου του Γκάους Disquisitiones Arithmeticae
Την ίδια χρονιά (1796) ο Γκάους έκανε πολλές συνεισφορές στη θεωρία αριθμών, όπως το θεώρημα των πρώτων αριθμών, που έθεσε ως εικασία στις 31 Μαΐου και προσφέρει μια καλή κατανόηση του πώς κατανέμονται οι πρώτοι αριθμοί ανάμεσα στους ακέραιους. Ο Γκάους ανακάλυψε επίσης ότι κάθε φυσικός αριθμός μπορεί να εκφρασθεί ως το άθροισμα ενός, δύο ή τριών τριγωνικών αριθμών (στις 10 Ιουλίου) και τότε έγραψε στο ημερολόγιό του την περίφημη από τον Αρχιμήδη λέξη «εύρηκα!» και «num = \Delta+\Delta+\Delta». Την 1η Oκτωβρίου δημοσίευσε ένα αποτέλεσμα για τον αριθμό των λύσεων πολυωνύμων με συντελεστές σε πεπερασμένα πεδία (αυτό οδήγησε τελικώς στις Εικασίες του Weil 150 χρόνια μετά).

Τα ώριμα χρόνια

Στη διατριβή του με τίτλο «Μία νέα απόδειξη ότι κάθε ρητή συνάρτηση μιας μεταβλητής μπορεί να αναλυθεί σε πραγματικούς παράγοντες του πρώτου ή του δεύτερου βαθμού» (1799, υπό την επίβλεψη του Γιόχαν Φρίντριχ Πφαφ) ο Γκάους έδωσε μία απόδειξη του θεμελιώδους θεωρήματος της άλγεβρας. Το σημαντικό αυτό θεώρημα δηλώνει ότι κάθε πολυώνυμο πρέπει να έχει τουλάχιστον μία ρίζα στο σύνολο των μιγαδικών αριθμών. Πριν από τον Γκάους είχαν προσπαθήσει και άλλοι μαθηματικοί να αποδείξουν αυτό το θεώρημα, όπως ο Ζαν λε Ροντ ντ' Αλαμπέρ. Η διατριβή του Γκάους περιείχε και μία κριτική της αποδείξεως του ντ' Αλαμπέρ, αλλά η ίδια η δική του απόδειξη δεν έγινε δεκτή εξαιτίας της υπονοούμενης χρήσεως του θεωρήματος καμπυλών του Jordan. Στο υπόλοιπο της ζωής του ο Γκάους παρήγαγε τρεις ακόμα αποδείξεις του: η τελευταία, το 1849, θεωρείται γενικώς αυστηρή με τα σημερινά πρότυπα. Οι προσπάθειές του ξεκαθάρισαν την έννοια του μιγαδικού αριθμού (στην τρίτη απόδειξη, το 1816, είχε κάνει χρήση μιγαδικών ολοκληρωμάτων).
Το 1801 ο Ιταλός αστρονόμος Τζιουζέπε Πιάτσι ανακάλυψε τον πρώτο αστεροειδή, τη Δήμητρα, αλλά μπόρεσε να την παρατηρήσει επί λίγες μόνο νύχτες. Ο Γκάους προέβλεψε σωστά τη θέση στην οποία θα βρισκόταν στο μέλλον, όπου και ξαναπαρατηρήθηκε από τον Φραντς φον Ζαχ στις 3 Δεκεμβρίου 1801 και από τον Χάινριχ Όλμπερς μία μέρα αργότερα. Ο Ζαχ σημείωσε ότι «χωρίς την ευφυή εργασία και τους υπολογισμούς του δόκτορα Γκάους ίσως να μην είχαμε ξαναβρεί τη Δήμητρα». Ο Γκάους, που μέχρι τότε στηριζόταν οικονομικά από τον δούκα, αμφέβαλλε για τη σταθερότητα αυτής της υποστήριξης, καθώς δεν πίστευε ότι τα καθαρά μαθηματικά ήταν αρκετά σημαντικά ώστε να αξίζουν υποστήριξη, οπότε μετά την αστρονομική του επιτυχία επεδίωξε μία θέση στην αστρονομία: Το 1807 διορίσθηκε καθηγητής της αστρονομίας και διευθυντής του αστεροσκοπείου στο Γκέτινγκεν, μία θέση που διατήρησε για το υπόλοιπο της ζωής του.
Η ανακάλυψη της Δήμητρας οδήγησε τον Γκάους να επεξεργασθεί μία θεωρία για τις κινήσεις μικρών σωμάτων που διαταράσσονται από μεγάλους πλανήτες, η οποία τελικώς εκδόθηκε το 1809 με τον τίτλο Theoria motus corporum coelestium in sectionibus conicis solem ambientum («Θεωρία της κινήσεως των ουρανίων σωμάτων που κινούνται σε κωνικές τομές περί τον Ήλιο»). Αυτή η θεωρία, για την οποία εργάσθηκε έντονα επί τρεις μήνες σε ηλικία 23 ετών, οδήγησε στην ορθή πρόβλεψη της θέσεως της Δήμητρας με ακρίβεια μισής μοίρας. Η εργασία αυτή, που επανεκδόθηκε λίγα χρόνια μετά ως «Θεωρία της ουρανίου κινήσεως», παραμένει ένας θεμέλιος λίθος των αστρονομικών υπολογισμών. Περιείχε μια πραγμάτευση της Μεθόδου των ελάχιστων τετραγώνων, μια μέθοδο που χρησιμοποιείται σε όλες τις επιστήμες μέχρι σήμερα για να ελαχιστοποιήσει την επίδραση των σφαλμάτων στις μετρήσεις. Ο Γκάους μπόρεσε να αποδείξει τη μέθοδο το 1809 υπό την παραδοχή σφαλμάτων που ακολουθούν την κανονική κατανομή (βλ. Θεώρημα Gauss-Markov, γκαουσιανή). Η μέθοδος είχε περιγραφεί το 1805 από τον Αντριάν-Μαρί Λεζάντρ, αλλά ο Γκάους ισχυρίσθηκε ότι ο ίδιος τη χρησιμοποιούσε από το 1795.
Προσωπογραφία του Γκάους που δημοσιεύθηκε στο περιοδικό Astronomische Nachrichten το 1828.
Ο Γκάους ήταν ένας θαυμαστός ανθρώπινος υπολογιστής. Αναφέρεται ότι, όταν ρωτήθηκε πώς μπόρεσε να προβλέψει την τροχιά της Δήμητρας με τέτοια ακρίβεια, απάντησε «με λογαρίθμους». Ο ερωτών τότε ζήτησε να μάθει πώς μπόρεσε να κοιτάξει τόσους πολλούς αριθμούς από τους λογαριθμικούς πίνακες τόσο γρήγορα. «Να τους κοιτάξω;» αποκρίθηκε ο Γκάους. «Ποιος χρειάζεται να τους δει; Απλώς τους υπολόγισα από μνήμης!»
Το 1818 ο Γκάους, βρίσκοντας μια πρακτική χρήση των υπολογιστικών του ικανοτήτων, έκανε μια γεωδαιτική επισκόπηση του κρατιδίου του Ανόβερου, ενώνοντάς το με προηγηθείσες δανέζικες επισκοπήσεις. Για αυτή την εργασία ο Γκάους εφηύρε το όργανο ηλιοτρόπιο, μια διάταξη που με ένα κάτοπτρο ανακλά το ηλιακό φως σε μεγάλες αποστάσεις για την ακριβή μέτρηση θέσεων.
Ο Γκάους επίσης ισχυρίσθηκε ότι είχε ανακαλύψει τη δυνατότητα για μη ευκλείδειες γεωμετρίες, αλλά δεν τη δημοσίευσε ποτέ. Αυτή η ανακάλυψη ήταν ένας σταθμός στα μαθηματικά, καθώς απελευθέρωσε τους μαθηματικούς από τη λανθασμένη πεποίθηση ότι τα αξιώματα του Ευκλείδη ήταν ο μόνος τρόπος για να είναι η γεωμετρία αυτοσυνεπής. Η έρευνα στις μη ευκλείδειες γεωμετρίες απετέλεσε, μεταξύ άλλων, το υπόβαθρο για τη γενική θεωρία της σχετικότητας του Αϊνστάιν, που περιγράφει τον χώρο του Σύμπαντος ως μη ευκλείδειο. Ο φίλος του Φάρκας Μπολυαί, με τον οποίο ο Γκάους είχε ορκισθεί «αδελφοσύνη και ειλικρίνεια» ως φοιτητής, είχε προσπαθήσει μάταια επί πολλά έτη να αποδείξει το αξίωμα των παράλληλων ευθειών από τα υπόλοιπα γεωμετρικά αξιώματα του Ευκλείδη. Ο γιος του Φάρκας, ο Γιάνος Μπολυαί, κατέληξε στη μη ευκλείδεια γεωμετρία το 1829, ενώ η εργασία του δημοσιεύθηκε το 1832. Αφού τη διάβασε, ο Γκάους έγραψε στον Φάρκας Μπολυαί: «Το να την εξυμνήσω θα ήταν ισοδύναμο με το να εξυμνήσω τον εαυτό μου. Γιατί ολόκληρο το περιεχόμενό της ... συμπίπτει σχεδόν ακριβώς με τις δικές μου σκέψεις, που απασχολούν το μυαλό μου τα τελευταία 30 ή 35 χρόνια.» Αυτός ο αναπόδεικτος ισχυρισμός έθεσε σε δοκιμασία τις σχέσεις του με τον Γιάνος Μπολυαί (που νόμιζε ότι ο Γκάους του «έκλεβε» την ιδέα), αλλά σήμερα θεωρείται γενικά ότι ήταν αληθής: Επιστολές του Γκάους πριν το 1829 τον εμφανίζουν να συζητά το πρόβλημα των παράλληλων ευθειών, π.χ. το 1817 ο Γκάους εξέφραζε ιδιωτικά τη βαθιά του απογοήτευση από την ευκλείδεια γεωμετρία. Σε μια προφητική του επιστολή προς το φίλο του αστρονόμο Όλμπερς, δήλωνε καθαρά ότι η ευκλείδεια γεωμετρία είναι μαθηματικώς ατελής. Ο Dunnington στο έργο του «Γκάους, Τιτάν της Επιστήμης», δείχνει με αρκετή επιτυχία ότι ο Γκάους κατείχε πλήρως τη μη ευκλείδεια γεωμετρία πολύ πριν αυτή δημοσιευθεί από τον Γιάνος, αλλά αρνήθηκε να την κοινοποιήσει φοβούμενος αντιδράσεις από τους συντηρητικούς μαθηματικούς: το 1829, ο Γκάους εξομολογήθηκε στον φοιτητή και φίλο του Φρίντριχ Βίλχελμ Μπέσελ ότι δεν θα δημοσίευε ποτέ τη δουλειά του πάνω στις μη ευκλείδιες γεωμετρίες γιατί φοβόταν τη διαμάχη που θα προκαλούσε ανάμεσα στους «Βοιωτούς». Ο μαθηματικός Morris Kline έγραψε: «[ο Γκάους] έλεγε σε ένα γράμμα στον Bessel της 27ης Ιανουαρίου 1829, ότι πιθανώς δεν θα δημοσίευε ποτέ τα ευρήματά του στο αντικείμενο αυτό, επειδή φοβόταν τη γελοιοποίηση, ή όπως το έθετε, φοβόταν την κατακραυγή των Βοιωτών, μια μεταφορική αναφορά σε μια καθυστερημένη ελληνική φυλή» (Mathematics and the Physical World, Νέα Υόρκη: Crowell, 1959, σελ. 449).
«Γκαουσιανές» κατανομές στη στατιστική
Αυτή η γεωδαιτική δουλειά είναι που οδήγησε αργότερα στην ανάπτυξη της λεγόμενης γκαουσιανής ή κανονικής κατανομής για την περιγραφή των σφαλμάτων στις μετρήσεις. Επιπλέον, τροφοδότησε το ενδιαφέρον του Γκάους για τη διαφορική γεωμετρία, έναν κλάδο των μαθηματικών τον οποίο εμπλούτισε το 1828 με το σημαντικό theorema egregium (= «αξιοσημείωτο θεώρημα» στα λατινικά), κατοχυρώνοντας μια βασική ιδιότητα της έννοιας της καμπυλότητας. Με απλά λόγια το θεώρημα αυτό αναφέρει ότι η καμπυλότητα μιας επιφάνειας μπορεί να καθορισθεί πλήρως μετρώντας γωνίες και αποστάσεις πάνω της, δηλαδή δεν εξαρτάται από το πώς η επιφάνεια κείται μέσα στον τριδιάστατο χώρο.

Τα ύστερα χρόνια και ο θάνατος

Το 1831 ο Γκάους άρχισε μια προσοδοφόρα συνεργασία με τον καθηγητή της φυσικής Βίλχελμ Βέμπερ, που οδήγησε σε νέες γνώσεις στο πεδίο του μαγνητισμού (όπως η εξεύρεση μιας σχέσεως για τη μονάδα της εντάσεως του μαγνητικού πεδίου με τη μάζα, το μήκος και τον χρόνο) και την ανακάλυψη των λεγόμενων «νόμων του Κίρχοφ» στον ηλεκτρισμό. Οι Γκάους και Βέμπερ κατασκεύασαν τον πρώτο ηλεκτρικό τηλέγραφο το 1833, η γραμμή του οποίου συνέδεε το αστεροσκοπείο με το Ινστιτούτο Φυσικής στο Γκέτινγκεν. Ο Γκάους παρήγγειλε ένα γεωμαγνητικό παρατηρητήριο να κτισθεί στον κήπο του αστεροσκοπείου και ίδρυσε με τον Βέμπερ τη «Μαγνητική Λέσχη» (magnetischer Verein), για την υποστήριξη μετρήσεων του μαγνητικού πεδίου της Γης σε πολλές περιοχές του κόσμου. Ο Γκάους ανέπτυξε μέθοδο για τη μέτρηση της οριζόντιας συνιστώσας της μαγνητικής επαγωγής του γεωμαγνητικού πεδίου, που χρησιμοποιήθηκε μέχρι και το 1970 περίπου, ενώ επεξεργάσθηκε τη μαθηματική θεωρία για τον διαχωρισμό του εσωτερικού πυρήνα της Γης, του φλοιού και των εξωτερικών μαγνητοσφαιρικών πηγών του μαγνητικού πεδίου της Γης.
Ο Γκάους απεβίωσε στο Γκέτινγκεν σε ηλικία 78 ετών και η σορός του αναπαύεται στο κοιμητήριο Albanifriedhof εκεί. Μόνο δύο άνθρωποι εκφώνησαν επικήδειο λόγο στην κηδεία του, ο γαμπρός του Heinrich Ewald και ο καλός του φίλος και βιογράφος Wolfgang Sartorius von Waltershausen. Ο εγκέφαλος του Γκάους συντηρήθηκε ξεχωριστά και μελετήθηκε από τον Ρούντολφ Βάγκνερ, που βρήκε τη μάζα του ίση με 1.492 γραμμάρια και την επιφάνειά του 219.588 mm2 με εκτεταμένες και πολύπλοκες έλικες (Dunnington, 1927).

Οικογένεια

Η προσωπική ζωή του Γκάους επισκιάσθηκε από τον πρόωρο θάνατο της πρώτης του συζύγου, της Γιοχάνα Όστχοφ (1780-1809), τον οποίο ακολούθησε σύντομα ο θάνατος ενός παιδιού, του Λουί. Ο Γκάους βυθίσθηκε σε κατάθλιψη, από την οποία δεν συνήλθε ποτέ τελείως, παρότι ξαναπαντρεύτηκε με μια φίλη της Γιοχάνα, τη Φριντερίκα Βιλελμίνε Βάλντεκ (Μίνα), η οποία δυστυχώς ήταν χρόνια άρρωστη. Μόλις και η δεύτερη σύζυγός του πέθανε, το 1831, μία από τις κόρες του Γκάους, η Τερέζα, ανέλαβε το σπιτικό και φρόντιζε τον μαθηματικό μέχρι τον θάνατό του. Η μητέρα του ζούσε στο ίδιο σπίτι από το 1817 ως τον θάνατό της το 1839.
Ο Γκάους και η Γιοχάνα είχαν τρία παιδιά, τον Γιόζεφ (1806-1873), τη Βιλελμίνα (1808-1846) και τον Λουί (1809-1810). Με τη Μίνα, ο Γκάους απέκτησε άλλα τρία: τον Εουγκένε (1811-1896), τον Βίλχελμ (1813-1879) και την Τερέζα(1816-1864). Από όλα τα παιδιά η Βιλελμίνα λεγόταν ότι πλησίαζε περισσότερο στο ταλέντο του, αλλά πέθανε νέα. Ο Εουγκένε μετανάστευσε στις ΗΠΑ περί το 1832 αφού μάλωσε με τον πατέρα του και εγκαταστάθηκε τελικά στο Σαιντ Τσαρλς του Μισούρι. Εκεί εγκαταστάθηκε αργότερα και ο Βίλχελμ, που πρόκοψε ως βιοτέχνης-υποδηματοποιός. Ας σημειωθεί ότι ο ίδιος ο Γκάους δεν επιθυμούσε τα παιδιά του να ασχοληθούν με τα μαθηματικά ή τις επιστήμες φοβούμενος «μη λερώσουν την καλή φήμη που δημιούργησε ο ίδιος για το οικογενειακό όνομα στους τομείς αυτούς», όπως αναφέρεται σε γράμμα από τον εγγονό του Robert Gauss προς τον Φέλιξ Κλάιν στις 3 Σεπτεμβρίου 1912.

Προσωπικότητα

Ο Γκάους ήταν τελειομανής και σκληρά εργαζόμενος. Σύμφωνα με τον Ισαάκ Ασίμοφ, κάποτε τον διέκοψαν στη μέση ενός προβλήματος και του είπαν ότι η σύζυγός του πέθαινε, οπότε λέγεται ότι απάντησε «Πες της να περιμένει μια στιγμή να τελειώσω» (Asimov: Biographical Encyclopedia of Science and Technology. Τhe Lives and Achievements of 1195 Great Scientists from Ancient Times to the Present, Chronologically Arranged. Νέα Υόρκη 1972: Doubleday).
Αρνιόταν να δημοσιεύσει εργασίες που δεν θεωρούσε πλήρεις και πέρα από κάθε κριτική: το προσωπικό του σύνθημα ήταν pauca sed matura (= «λίγα, αλλά ώριμα»). Η εξέταση των προσωπικών του ημερολογίων αποκαλύπτει ότι στην πραγματικότητα είχε ανακαλύψει αρκετές σημαντικές μαθηματικές συλλήψεις χρόνια ή δεκαετίες πριν αυτές πρωτοδημοσιευθούν από άλλους μαθηματικούς. Ο ιστορικός των μαθηματικών Έρικ Τεμπλ Μπελ εκτιμά ότι αν ο Γκάους είχε γνωστοποιήσει όλες του τις ανακαλύψεις, τα μαθηματικά θα είχαν προχωρήσει κατά 50 χρόνια (Bell: Men of Mathematics: The Lives and Achievements of the Great Mathematicians from Zeno to Poincaré, Νέα Υόρκη 1986: Simon and Schuster, σελ. 218-269).
Η κριτική που ασκείται στον Γκάους είναι ότι δεν υποστήριζε τους νεότερους μαθηματικούς που τον ακολούθησαν. Σπανίως συνεργαζόταν με άλλους μαθηματικούς και πολλοί τον θεωρούσαν επιφυλακτικό και αυστηρό. Παρότι δίδαξε φοιτητές, ο Γκάους ήταν γνωστό ότι αντιπαθούσε τη διδασκαλία. Λέγεται ότι παρακολούθησε μόνο ένα επιστημονικό συνέδριο σε ολόκληρη τη ζωή του, στο Βερολίνο το 1828. Ωστόσο, αρκετοί από τους φοιτητές του εξελίχθηκαν σε επιφανείς μαθηματικούς, όπως οι Ρίχαρντ Ντέντεκιντ, Μπέρναρντ Ρίμαν και Φρίντριχ Βίλχελμ Μπέσελ.
Ο Γκάους συνήθως αρνιόταν να παρουσιάσει τη διαίσθηση πίσω από τις συχνά κομψότατες αποδείξεις του. Προτιμούσε να εξαφανίζει όλα τα ίχνη του πώς τις είχε σκεφθεί. Ο ίδιος εξηγεί στις Disquisitiones Arithmeticae ότι όλη η ανάλυση (με την έννοια του δρόμου που έπαιρνε κάποιος για να φθάσει στη λύση ενός προβλήματος) πρέπει να παραλείπεται για χάρη συντομίας.
Ο Γκάους είχε βαθιά θρησκευτική πίστη και ήταν και συντηρητικός πολιτικά: υποστήριζε τη μοναρχία και αντιπαθούσε τον Ναπολέοντα, που τον έβλεπε ως γέννημα της επαναστάσεως.

Ονομάσθηκαν προς τιμή του

  • Από το 1989 ως την κατάργηση του νομίσματος το 2000, η προσωπογραφία του Γκάους και μια γκαουσιανή καμπύλη μαζί με κάποια κτήρια του Γκέτινγκεν απεικονίζονταν στο γερμανικό χαρτονόμισμα των 10 μάρκων. Στην άλλη πλευρά του ίδιου χαρτονομίσματος απεικονιζόταν το ηλιοτρόπιο και μια προσέγγιση τριγωνισμού για το Ανόβερο. Επίσης, η Γερμανία έχει εκδώσει τρία γραμματόσημα προς τιμή του Γκάους, το 1955 για τα 100 χρόνια από τον θάνατό του και δύο το 1977 για τα 200 από τη γέννησή του.

Λέοναρντ Όιλερ

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Πορτρέτο του Λ. Όιλερ
Ο Λέοναρντ Όιλερ (Leonard Euler, 15 Απριλίου 1707 – 18 Σεπτεμβρίου 1783) ήταν πρωτοπόρος Ελβετός μαθηματικός και φυσικός. Σε αυτόν οφείλεται, ανάμεσα σε άλλα, και η καθιέρωση του συμβόλου f(x) για τις συναρτήσεις.
Βιογραφία

Γεννήθηκε στη Βασιλεία της Ελβετίας στις 15 Απριλίου 1707 και ήταν γιος ιερέα. Σπούδασε γεωμετρία στο πανεπιστήμιο της Βασιλείας. Σε ηλικία 20 ετών πήγε στην Αγία Πετρούπολη της Ρωσίας, όπου εργάστηκε για την οργάνωση της Ακαδημίας Επιστημών, έπειτα από πρόσκληση της αυτοκράτειρας Αικατερίνης Α΄. Διορίστηκε καθηγητής της Φυσικής Φιλοσοφίας στο πανεπιστήμιο της Αγίας Πετρούπολης. Το 1744 τον προσκάλεσε ο Φρειδερίκος Β΄ της Πρωσίας στο Βερολίνο, για να αναλάβει διευθυντής του τμήματος των μαθηματικών της εκεί Ακαδημίας. Είναι χαρακτηριστικός ο λόγος που είπε στο Γάλλο άθεο φιλόσοφο Ντενί Ντιντερό, όταν η Τσαρίνα της Ρωσίας Μεγάλη Αικατερίνη είχε καλέσει τον Όιλερ στην Αυλή της, σε μία προσπάθεια να σταματήσει την αθυροστομία του Ντιντερό. Ο Ελβετός είπε στο Γάλλο: «Κύριε, ( α + β ) / ν = χ, άρα ο Θεός υπάρχει. Απαντήστε!». Έτσι, ο Ντιντερό αποχώρησε ηττημένος.
Τα τελευταία 17 χρόνια της ζωής του ο διάσημος μαθηματικός ήταν σχεδόν τυφλός. Αυτό, όμως, δεν τον εμπόδισε να εργάζεται. Η εκπληκτική μνήμη του σε συνδυασμό με τη διανοητική του διαύγεια, τού ήταν αρκετές για να πραγματοποιεί προφορικά τους υπολογισμούς του, τους οποίους υπαγόρευε στη γραμματέα του. Μάλιστα, την περίοδο της τύφλωσής του παρήγαγε το μισό από το συνολικό του έργο.
Πέθανε στις 18 Σεπτεμβρίου 1783. Ο μαθηματικός και φιλόσοφος Ντε Κοντορσέ είπε στον επικήδειο: «Ο Όιλερ σταμάτησε να ζει και να υπολογίζει».

Έργο

Διακρίθηκε στα ανώτερα μαθηματικά και κυρίως στο διαφορικό και ολοκληρωτικό λογισμό. Οι σπουδαιότερες εργασίες του αναφέρονται στην ανάλυση των ισοπεριμέτρων, στη συσχέτιση των κυκλικών και των εκθετικών συναρτήσεων, στη θεωρία της περιστροφής σώματος γύρω από σταθερό σημείο, στην αναλυτική γεωμετρία (την οποία συμπλήρωσε και τελειοποίησε), στη θεωρία των αριθμών κ.τ.λ. Ακόμη υπήρξε ο εισηγητής της συντομογραφίας και του συμβολισμού (τριγωνομετρία), κάνοντας πρώτος τη χρήση του συμβόλου e για τον προσδιορισμό της βάσης των φυσικών λογαρίθμων. Πολλοί μαθηματικοί όροι φέρουν το όνομά του, όπως η σταθερά του Όιλερ, ο αριθμός του Όιλερ (το γνωστό e), οι μεταβλητές, η γραμμή και η εξίσωση του Όιλερ κ.ά. Από τα έργα του σπουδαιότερα είναι: Η μηχανή ή η επιστήμη της κίνησης (1736), Θεωρία των κινήσεων πλανητών και κομητών (1744), Εισαγωγή στην ανάλυση των απείρως μικρών (1748, 2 τόμοι), Γενικές αρχές του διαφορικού λογισμού (1755), Γενικές αρχές του ολοκληρωτικού λογισμού (1768 - 1774), Εγχειρίδιο άλγεβρας (1770),Θεωρία των κινήσεων της Σελήνης (1772). Τα έργα του σήμερα ξεπερνούν τους 75 τόμους συνολικά.
Θεωρείται μάλιστα ο "πατέρας" του γνωστού παιχνιδιού σουντόκου, αφού ο ίδιος διατύπωσε πρώτος τους κανόνες του.
Για την ακρίβεια, το έργο του αποτελείται από 75 τόμους, συνολικά 45000 σελίδες μαθηματικών!Επίσης υπάρχουν 4000 χειρόγραφα (αλληλογραφία με διάσημους σύγχρονους του μαθηματικούς).

Το πρόβλημα των γεφυρών του Κένιγκσμπεργκ

Χάρτης του Κένιγκσμπεργκ της εποχής του Όιλερ.
Μια από τις γνωστότερες επιτυχίες του Όιλερ ήταν η επίλυση του προβλήματος με τις γέφυρες του Κένιγκσμπεργκ.
Πρόκειται για τον ποταμό Πρέγκελ, ο οποίος, διασχίζει το Κένιγκσμπεργκ, πρωσσικό έδαφος την εποχή που ζούσε ο Όιλερ (σήμερα ανήκει στη Ρωσία και ονομάζεται Καλίνινγκραντ). Ο εν λόγω ποταμός χωρίζεται και δημιουργεί δύο νησίδες στο κέντρο της πόλης. Οι κάτοικοι του Κένινγκσμπεργκ είχαν κατασκευάσει επτά γέφυρες για να υπάρχει συγκοινωνία με τα διάφορα μέρη της πόλης. Το πρόβλημα αν μπορούσε κάποιος να περιηγηθεί την πόλη, περνώντας από κάθε γέφυρα μία μόνο φορά και να επιστρέψει στο ίδιο σημείο από όπου είχε ξεκινήσει, ήταν ένας γρίφος που ταλάνιζε για πολλά χρόνια τους κατοίκους. Τελικά, το 1735, ο Όιλερ απέδειξε ότι κάτι τέτοιο ήταν αδύνατο. Η απόδειξη του Ελβετού αναφέρεται συχνά και ως η απαρχή της τοπολογίας, ενός κλάδου των Μαθηματικών για τον οποίο οι φυσικές λεπτομέρειες του προβλήματος δε διαδραματίζουν κανένα ρόλο. Στην απόδειξη του Όιλερ, σημασία έχει το δίκτυο των συνδέσεων μεταξύ των διαφόρων τμημάτων της πόλης και όχι η συγκεκριμένη θέση τους ή οι αποστάσεις μεταξύ τους. Ο χάρτης του Μετρό του Λονδίνου είναι ένα αντίστοιχο παράδειγμα.

Γεωμετρία

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια

Γεωμετρία είναι ο κλάδος των μαθηματικών που ασχολείται με χωρικές σχέσεις, δηλαδή με τη σύνθεση του χώρου που ζούμε. Εμπειρικά, αλλά και διαισθητικά, οι άνθρωποι χαρακτηρίζουν τον χώρο μέσω συγκεκριμένων θεμελιωδών ιδιοτήτων, που ονομάζονται αξιώματα. Τα αξιώματα δε μπορούν να αποδειχτούν, αλλά μπορούν να χρησιμοποιηθούν σε συνδυασμό με μαθηματικούς ορισμούς για τα σημεία, τις ευθείες, τις καμπύλες, τις επιφάνειες και τα στερεά για την εξαγωγή λογικών συμπερασμάτων.

Ιστορία

Χρήση της τριγωνομετρίας για τον υπολογισμό του ύψους
Οκτάεδρο
Λόγω των άμεσων πρακτικών της εφαρμογών, η γεωμετρία ήταν ανάμεσα στους πρώτους ιστορικά κλάδους των μαθηματικών. Τη γεωμετρία ανέπτυξαν εμπειρικά οι Βαβυλώνιοι και οι Αιγύπτιοι. Μετά τις πλημμύρες του Νείλου, οι Αιγύπτιοι χρησιμοποιούσαν εμπειρική γεωμετρία, για να υπολογίσουν τα όρια των χωραφιών τους. Οι Βαβυλώνιοι ανέπτυξαν τις αρχές της τριγωνομετρίας διαιρώντας τον κύκλο και τις γωνίες σε 360 μοίρες και υπολογίζοντας τον αριθμό π, δηλαδή το πηλίκο του μήκους της περιφέρειας του κύκλου δια το μήκος της διαγωνίου του, περίπου ίσο με 3+1/8.
Σχήμα Ευκλείδειας γεωμετρίας
Με τη γεωμετρία ήρθαν σε επαφή και οι αρχαίοι Έλληνες κυρίως με το Θαλή το Μιλήσιο. Για τους Πυθαγορείους η γεωμετρία είναι μία εκ των τεσσάρων επιστημών, οι οποίες αποτελούν μέρος της φιλοσοφίας και θεολογίας τους. Συσχετίζουν μάλιστα εννοιολογικά την γεωμετρία με τις υπόλοιπες τρεις επιστήμες τους: την αριθμητική, την μουσική και την αστρονομία. Αργότερα, ο Πλάτωνας παρουσίασε τις αριθμητικές και τις γεωμετρικές έννοιες ως τον ιδανικό κόσμο, ή κόσμο των ιδεών. Υποστήριξε  μάλιστα πως ο κόσμος είναι κατασκευασμένος από πέντε στερεά που σήμερα ονομάζονται Πλατωνικά στερεά και είναι τα πέντε κυρτά κανονικά πολύεδρα: το τετράεδρο(ή τριγωνική πυραμίδα), το εξάεδρο (ή κύβος), το οκτάεδρο, το δωδεκάεδρο και το εικοσάεδρο. Την άποψη αυτή για τον κόσμο δεχόταν και ο Αριστοτέλης, αλλά και πολύ μετά από αυτόν οι Αλχημιστές και άλλοι.
Οι Έλληνες γεωμέτρες προσέγγιζαν την γεωμετρία σαν επιστήμη καθαρής γνώσης και έπρεπε να βρίσκουν αποδείξεις εφαρμοζόμενες με τον κανόνα και τον διαβήτη, σύμφωνα με τις επιταγές που καθορίστηκαν από τον Ευκλείδη περίπου το 300 π.Χ. με το βιβλίο του "Στοιχεία" που αποτελείται από 13 τόμους. Δημιούργησαν έτσι την αποδεικτική θεωρητική γεωμετρία , σε αντίθεση με την εμπειρική γεωμετρία που επικρατούσε, εξέλιξη η οποία κορυφώνεται στην Αλεξανδρινή εποχή. Η γεωμετρία είναι ο πρώτος κλάδος των μαθηματικών που τοποθετήθηκε σε αξιωματική βάση από τον Ευκλείδη στα "Στοιχεία" του, και δικαιολογημένα ονομάζεται "Ευκλείδεια γεωμετρία". Το πιο χαρακτηριστικό γνώρισμα της ευκλείδειας γεωμετρίας είναι το πέμπτο αίτημα του Ευκλείδη, δηλαδή ότι θα πρέπει να δεχθούμε αξιωματικά ότι από σημείο εκτός ευθείας διέρχεται μόνο μία παράλληλος, γιατί δε μπορούμε να το αποδείξουμε.
Η γεωμετρία έπαιζε σημαντικό ρόλο στο φιλοσοφικό σύστημα του Καντ, ο οποίος μιλούσε για καθαρή εποπτεία, η οποία ουσιαστικά ήταν γεωμετρικά σχήματα. Ειρωνικά, μέσω της γεωμετρίας δείχθηκαν εποπτικά τα σφάλματα αυτού του συστήματος. Έτσι, προέκυψαν οι μη ευκλείδειες γεωμετρίες, όπως η υπερβολική γεωμετρία του Λομπατζέφσκι και η σφαιρική γεωμετρία του Ρήμαν. Στις μη ευκλείδειες γεωμετρίες από σημείο εκτός ευθείας διέρχονται περισσότερες ή καμιά παράλληλος αντίστοιχα.

Σύγχρονες αντιλήψεις της γεωμετρίας

Προβολή επιπέδου υπερβολικής γεωμετρίας στον τρισδιάστατο ευκλείδιο χώρο.
Η σημερινή επιστήμη αποδέχεται την ευκλείδεια γεωμετρία θεωρώντας την ως τη πιο βασική και εφαρμόσιμη μορφή της. Επιπλέον, υπάρχουν και δύο προαναφερθείσες μη ευκλείδειες γεωμετρίες, οι οποίες ονομάζονται και απόλυτες γεωμετρείες και μπορούν να απεικονιστούν στην ευκλείδεια, αλλά έχουν αναπτυχθεί και άλλες. Παράδειγμα μιας άλλης γεωμετρίας είναι ο τετραδιάστατος κατά τα άλλα ευκλείδειος χώρος.
Η μελέτη της γεωμετρίας γίνεται πλέον με συστήματα αναφοράς και με βάση την έννοια του διανύσματος. Με αυτόν τον τρόπο πολλές γεωμετρικές σχέσεις μπορούν να αλγεβροποιηθούν, δηλαδή να γίνουν αριθμητικές σχέσεις και να μελετηθούν αλγεβρικά. Αυτή η μελέτη της γεωμετρίας είναι ξεχωριστός κλάδος των μαθηματικών και ονομάζεται αναλυτική γεωμετρία.
Η γεωμετρία είναι χρήσιμη σε άλλους κλάδους των μαθηματικών και επιστημών, όπως είναι οι γραφικές παραστάσεις των συναρτήσεων, η Άλγεβρα και η Φυσική.

Σύγκριση απόλυτων γεωμετριών και αναλυτικής γεωμετρίας

Σύγκριση απόλυτων γεωμετριών
Bewegende hyperbolische paraboloïde.gif
Σε όλες σχεδόν τις γεωμετρίες ορίζονται αρχικά τρεις έννοιες το σημείο, η ευθεία και το επίπεδο. Για να γίνουν αντιληπτές η σφαιρική και η υπερβολική γεωμετρία συνήθως προβάλλουμε ένα επίπεδό τους στον τρισδιάστατο ευκλείδειο χώρο, ενώ οι ιδιότητες της ευκλείδειας γεωμετρίας θεωρούνται γνωστές. Ανάλογα με το είδος της γεωμετρίας χρησιμοποιούμε το κατάλληλο σύστημα αναφοράς, για να κατασκευάσουμε την αντίστοιχη αναλυτική γεωμετρία.
  • Επίπεδο: Θεωρούμε ένα επίπεδο για την ευκλείδεια, μία σφαίρα για τη σφαιρική και ένα σελοειδές σχήμα για την υπερβολική. Η παραγωγή του σελοειδούς διαφαίνεται στο σχήμα αριστερά. Όλα τα σχήματα της κάθε γεωμετρίας τα θεωρούμε για λόγους ευκολίας πάνω σε αυτές τις επιφάνειες. Η κάθε επιφάνεια είναι το επίπεδο της γεωμετρίας στην οποία αντιστοιχεί.
  • Σημείο: Και για τις τρεις γεωμετρίες ένα σημείο πάνω στο επίπεδό τους θεωρείται σημείο της αντίστοιχης γεωμετρίας.
  • Ευθεία: Η ευθεία της ευκλείδειας γεωμετρίας είναι ευθεία, στη σφαιρική είναι μέγιστος κύκλος της σφαίρας. Και στις τρεις γεωμετρίες από κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο εκτός ευθείας. Στην ευκλείδεια γεωμετρία από σημείο εκτός ευθείας διέρχεται μόνο μία παράλληλος, στη σφαιρική καμιά παράλληλος, ενώ στην υπερβολική πολλοί παράλληλοι.
Με βάση τα παραπάνω μπορούν να οριστούν στην κάθε γεωμετρία τα βασικά γεωμετρικά σχήματα όπως τα τρίγωνα και τα ευθύγραμμα τρίγωνα και να μελετηθούν οι ιδιότητές τους.

Γεωμετρικές κατασκευές

Κύριο λήμμα: Compass and straightedge constructions
Οι αρχαίοι επιστήμονες επικεντρώθηκαν αρκετά στη κατασκευή γεωμετρικών αντικειμένων τα οποία είχαν περιγραφθεί κατά κάποιο τρόπο. Κλασσικά όργανα επέτρεψαν τη γεωμετρική κατασκευή. Πάρα ταύτα, κάποια προβλήματα εξελίχθηκαν σε πολύ δύσκολα έως και απίθανα να λυθούν.

Μοντέρνα γεωμετρία

Μοντέρνα γεωμετρία είναι ο τίτλος του γνωστού βιβλίου από τον Dubrovin, τον Novikov και τον Fomenko (πρώτη έκδοση το 1979, Ρωσία). Σε περίπου 1000 σελίδες, το βιβλίο έχει έναν στόχο: γεωμετρικές κατασκευές ποικίλων ειδών. Στο δεύτερο μισό του αιώνα μετά τη δημοσίευση του βιβλίου για διαφορετική γεωμετρία, αλγεβρική γεωμετρία και συμπλεκτική γεωμετρία, παρουσιάζεται κυρίως η μοντέρνα γεωμετρία, με πολλές διασυνδέσεις με άλλα μέρη των μαθηματικών και της φυσικής.

Τετάρτη 6 Μαρτίου 2013

Οι 10 σπουδαιότεροι μαθηματικοί όλων των εποχών Μέρος Β'


Οι δέκα μεγαλύτερες μαθηματικές ιδιοφυΐες των οποίων οι ανακαλύψεις άλλαξαν τον κόσμο σύμφωνα με την guardian.co.uk.  


Γκέοργκ Καντόρ (1845-1918)

Από όλους του μεγάλους μαθηματικούς, ο Cantor είναι αυτός που πληρεί πιο τέλεια από όλους το χολιγουντιανό στερεότυπο, πως μαθηματικές ιδιοφυΐες και ψυχικές ασθένειες είναι έννοιες αλληλένδετες. Το λαμπρότερο επίτευγμα του Γερμανού, γεννημένου στην Αγ. Πετρούπολη, ήταν η ανάπτυξη ενός τελείως καινούριου τρόπου απεικόνισης και αναφοράς στο μαθηματικό άπειρο. Η νέα αυτή οδός τον οδήγησε στο να καταλάβει πως ορισμένα άπειρα ήταν μεγαλύτερα από κάποια άλλα. Το αποτέλεσμα αυτό ήταν καταπληκτικό. Δυστυχώς υπέστη ψυχικές διαταραχές και βρισκόταν συχνά στο νοσοκομείο. O Cantor ασχολήθηκε ακόμα με τη θρησκεία, τη φιλοσοφία και άλλα. Είχε επίσης βαλθεί να αποδείξει πως τα έργα του Shakespeare ήταν στην πραγματικότητα του Francis Bacon.

Πολ Έρντος (1913-1996)
 
Έζησε μια νομαδική ζωή, χωρίς πολλές πολυτέλειες. Τα προσωπικά του αντικείμενα χωρούσαν σε μια βαλίτσα με την οποία ταξίδευε συνεχώς από Πανεπιστήμιο σε Πανεπιστήμιο, και από δωμάτια συναδέλφων του σε δωμάτια φθηνών ξενοδοχείων. Σπάνια δημοσίευε τα έργα του μόνος του. O Oύγγρος μαθηματικός  προτιμούσε να συνεργάζεται με συναδέλφους του- συνολικά 1.500 έργα με 511 συναδέλφους, καθιστώντας τον τον δεύτερο πιο παραγωγικό μαθηματικό μετά τον Euler. Ένας συνεργάτης του  είπε κάποτε, «είναι ένας μαθηματικός-μηχανή που μετατρέπει τον καφέ σε θεωρήματα» και ο Erdos έπινε απίστευτες ποσότητες.


Τζον Χόρτον Κόνβει (1937-σήμερα)

Ο μαθηματικός από το Λίβερπουλ είναι γνωστός για τα υψηλού επιπέδου μαθηματικά που έχουν προέλθει από τις αναλύσεις του για  παιχνίδια και παζλ. Το 1970, ήρθε με τους κανόνες για το Παιχνίδι της Ζωής, ένα παιχνίδι στο οποίο μπορείτε να δείτε πώς τα πρότυπα κύτταρα εξελίσσονται σε ένα πλέγμα, παιχνίδι που λάτρεψαν οι πρώτοι επιστήμονες που ασχολήθηκαν με πληροφορική. Έχει κάνει σημαντικές συνεισφορές σε πολλούς κλάδους των μαθηματικών, όπως θεωρία ομάδων, θεωρίας αριθμών και της γεωμετρίας.


Γκριγκόρι Πέρελμαν (1966-σήμερα)

Ο Ρώσος μαθηματικός που κέρδισε το βραβείο του ενός εκατομμυρίου δολαρίων λύνοντας την Υπόθεση του Πουανκαρέ.. και αρνήθηκε τα χρήματα! «Aν η απόδειξη είναι σωστή, τότε οποιαδήποτε περαιτέρω αναγνώριση είναι περιττή». Η εικασία του Poincaré για πρώτη φορά αναφέρθηκε το 1904 από τον Henri Poincaré και αφορά τη συμπεριφορά των σχημάτων σε τρεις διαστάσεις. O Perelman είναι σήμερα άνεργος και ζει μια λιτή ζωή με τη μητέρα του στην Αγία Πετρούπολη . Ενώ έχει δηλώση πως διαφωνεί με τον τρόπο λειτουργίας της επίσημης μαθηματικής κοινότητας και αρνήθηκε το Fields Medal to 2006..


Τέρι Τάο (1975-σήμερα)

Αυστραλός κινεζικής καταγωγής που ζει στις ΗΠΑ και κέρδισε και αυτός το Fields Medal. Μαζί με τον Ben Green, απέδειξε ένα καταπληκτικό συμπέρασμα για τους πρώτους αριθμούς- μπορούν να βρεθούν ακολουθίες πρώτων αριθμών οποιουδήποτε μήκους, στις οποίες κάθε αριθμός στην ακολουθία να έχει μια σταθερή απόσταση με τον επόμενο. Για παράδειγμα, η ακολουθία 3, 7, 11, έχει τρεις πρώτους αριθμούς με απόσταση ίση με 4. Η ακολουθία 11, 17, 23, 29 έχει τέσσερις πρώτους αριθμούς σε απόσταση ίση με 6. Ενώ υπάρχουν ακολουθίες όπως αυτές για κάθε απόσταση, κανείς δεν έχει βρει μία για περισσότερο από 25 πρώτους, δεδομένου ότι οι αριθμοί αυτοί έχουν πλέον περισσότερο από 18 ψηφία.

Οι 10 σπουδαιότεροι μαθηματικοί όλων των εποχών 

Οι δέκα μεγαλύτερες μαθηματικές ιδιοφυΐες των οποίων οι ανακαλύψεις άλλαξαν τον κόσμο σύμφωνα με την guardian.co.uk.  Από το ξεκίνημα των μαθηματικών μέχρι σήμερα.
 
 
 Ο Πυθαγόρας (570-495 π.Χ.)
Φιλόσοφος, μαθηματικός, χορτοφάγος, μυστικιστής και κυρίως μανιακός με τους αριθμούς. Γνωστός περισσότερο για το θεώρημα του πάνω στα ορθογώνια τρίγωνα-αν και υπάρχουν θεωρίες πως το θεώρημα υπήρχε ήδη. Ζούσε μέσα σε μία πνευματική και μαθηματική κοινότητα που ο ίδιος δημιούργησε- τους Πυθαγόρειους. Η θεωρία του για τους αριθμούς ως βάση του σύμπαντος των έκανε πατέρα των αρχαίων ελληνικών μαθηματικών, αλλά και γενικότερα των μαθηματικών όπως τα γνωρίζουμε και σήμερα. 

Η Υπατία (370-415 μ.Χ.)
Ελληνίδα νεοπλατωνική φιλόσοφος, μαθηματικός και αστρονόμος. Κόρη του μαθηματικού και αστρονόμου Θέωνα, ήταν μέλος της βιβλιοθήκης της Αλεξάνδρειας τον 4ο αιώνα π.Χ. ως επικεφαλής της εκεί σχολής των Πλατωνιστών, η διδασκαλία της αποτέλεσε πόλο έλξης για τους διανοούμενους της εποχής. Μεγαλύτερο έργο της ήταν η δική της έκδοση για τα Στοιχεία του Ευκλείδη- το σπουδαιότερο μαθηματικό έργο. Ενώ είναι πολύ γνωστή για τον βασανισμό της και την βίαιη δολοφονία της από φανατικούς χριστιανούς.


Τζιρόλαμο Καρντάνο (1501-1576)

Ιταλός μαθηματικός, φυσικός και αστρολόγος και παθολογικός τζογαδόρος. Από τους πιο σημαντικούς ανθρώπους της Αναγέννησης. Γιατρός στο επάγγελμα ενώ είχε γράψει και 131 βιβλία. Ο τζόγος ήταν αυτός που τον οδήγησε στην πρώτη επιστημονική ανάλυση πιθανοτήτων. Κατάλαβε πως θα μπορούσε να κερδίσει περισσότερα στα ζάρια αν εξέφραζε την πιθανότητα γεγονότων με την χρήση μαθηματικών. Αυτή η επαναστατική του ιδέα οδήγησε στη θεωρία πιθανοτήτων, η οποία με τη σειρά της στη γέννηση της στατιστικής.


Λέοναρντ Όιλερ (1707-1783)

Ίσως ο πιο παραγωγικός μαθηματικός όλων των εποχών, αφού δημοσίευσε σχεδόν 900 βιβλία. Ο Ελβετός μαθηματικός και φυσικός στα τελευταία 17 χρόνια της ζωής του ήταν σχεδόν τυφλός- αλλά η παραγωγικότητα του αυξήθηκε ακόμα περισσότερο χάρη στην εκπληκτική του μνήμη. Το διάσημο θεώρημα του, eiπ + 1 = 0, όπου e η μαθηματική σταθερά γνωστή και ως αριθμός Euler και i η τετραγωνική ρίζα του μείον ένα θεωρείται ένα από τα πιο όμορφα στα μαθηματικά. Ενώ είναι αυτός που καθιέρωσε το σύμβολο f(x) για τις συναρτήσεις. Για τους φαν- είναι και ο πατέρας του sudokou.


Καρλ Φρίντριχ Γκάους (1777-1855)

Γνωστός και ως «ο πρίγκηπας των μαθηματικών». Ο Γερμανός μαθηματικός είχε πολύ μεγάλη συνεισφορά στους περισσότερους κλάδους των μαθηματικών τον 19ο αιώνα. Τελειομανής, που δε δημοσίευε πολλές από τις δουλειές του, αφού προτιμούσε να  βελτιώσει όσο το δυνατόν γινόταν τα θεωρήματα του. Η επαναστατική ανακάλυψη του για την ύπαρξη μη ευκλείδειων χώρων στη γεωμετρία βρέθηκε στις σημειώσεις του μετά το θάνατό του. Κατά την ανάλυση του σε αστρονομικά δεδομένα κατάλαβε πως το σφάλμα της μέτρησης παρήγαγε μια κωνοειδή καμπύλη- τη γνωστή κανονική καμπύλη.
   οι 100 μαθηματικοί


βάζοντας τάξη με κριτήριο το " ΠόΤΕ"
 




Αρχαιότητα

ο Πυθαγόρας 582 – 497      Σάμος,  Σικελία
ο Θεαίτητος  ( 415 – 368 )  Αθήνα  η θεωρία των άρρητων
ο Εύδοξος  408 – 355  Κνίδος
ο Ευκλείδης,  325 –    Αθήνα, Αλεξάνδρεια
ο Αρχιμήδης   285 – 212     Συρακούσες
ο Ερατοσθένης  276 – 196  Κυρήνη, Αλεξάνδρεια
ο Απολλώνιος  261 – 190   Πέργη
ο Ίππαρχος   190- 120   Νίκαια

ο Κλαύδιος Πτολεμαίος    65 - 165      Αλεξάνδρεια                
ο Διόφαντος,  210 - 290 Αλεξάνδρεια
o Πάππος,  260        Αλεξάνδρεια
η Υπατία                          370 - 415   Αλεξάνδρεια





Μεσαίωνας
ο Aryabhata 476  - 550
ο Brahmagupta (598 – 668 )
ο al-Khwarizmi   ΑλΧουαρίσμι  (780  - 850 )                          
o Mohammad ibn Jabir al-Battani (Albatenius) ( 858-929)
o Alhazen  ( 965-  1039)
o  Omar Khayyam (1048- 1131)
o Bhaskara  (1114 – 1185 )
o Leonardo da Pisa   Fibonacci (1170 – 1230 )
ο Madhava. (13401425 )
15ος αιώνας

o Johann Muller Regiomontanus ( 1436 – 1476)
16ος αιώνας
o Niccoló Tartaglia   ( 1499- 1557 ) 
ο Girolamo Cardano  (1501 – 1576 )
o François Viète ( 1540 – 1603 ) 
o Simon Stevin ( 1546 – 1620)
o John Napier  ( 1550 – 1617 )
o Johann Kepler  ( 1571 – 1630 )

17ος αιώνας
o Bonaventura Cavalieri  (1598 – 1647)  
o Rene Descartes ( 1596 – 1650 ) 

o Pierre Fermat                        ( 1601 – 1665 )     



o John Wallis ( 1616- 1703)
o Blaise Pascal ( 1623 – 1662)
o Christiaan Huygens ( 1629 – 1695 )
o  Isaac Newton ( 1642 – 1727 )
o Godfried Leibniz ( 1646 – 1716 )
o Michel Rolle (1652 – 1719 )
o Jacob Bernouilli (1654-1705)
o Marquis de l’ Hospital  (1661 – 1704 )
  

18ος αιώνας
o Abraham de Moivre ( 1667 – 1754 )   
o Brooke Taylor   ( 1685 – 1731 )
o Colin Maclaurin   ( 1698 – 1746 )
o Daniel Bernoulli                  ( 1700 – 1782 )         



                 o Leonhard Euler   ( 1707 – 1783 )        

o Alexis Clairaut ( 1713 – 1765 )
o Jean LeRond d’ Alembert ( 1717 – 1783 ) 
                         
                            
                      o Joseph Louis Lagrange   (  1736 – 1813 )  



o Pierre Simon de Laplace (1749 – 1827 )
o Adrien Marie Legendre  ( 1752 – 1833 ) 
o Gaspard Monge  ( 1764 – 1818 )   




19ος αιώνας
o Joseph Fourier                        ( 1768 – 1830 ) 



η  Sophie Germain  ( 1776 – 1831 )         





 

                        

                       o Karl Friedrich Gauss  (1777  - 1855)



o Denis Poisson   (1781 – 1840)
o Bernard Bolzano (1781 – 1848)
o Nikolai  Lobachefski (1793 -1856)
o Michel Chasles (1793 -1880)            
o Jean Victor Poncelet (1788 -1867)
o Augistin Louis Cauchy   (1789 – 1857)  
o Jacob Steiner   (1796 – 1863)  
                           
o Niels Hendrik Abel  (1802 – 1829) 



o Janos Bolyai                    ( 1802 – 1860 )


o Karl Gustav Jacobi ( 1804 – 1851 )  
o  William Rowan Hamilton                    (1805 – 1865 )




o Lejeune Dirichlet  ( 1805 – 1859 )  
o Benjamin Peirce  ( 1809 – 1880 )  
o Joseph Liouville  ( 1809 – 1882 )  
o Ernst Eduard Kummer  ( 1810 – 1893 )  
o Evarist Gallois  ( 1811 – 1832 )  
ο  George Boole (1815-1864)  
o Kark Weierstrass ( 1815 -1897 )
o George Gabriel Stokes ( 1819- 1903 )
o Athur Cayley   ( 1821- 1895 )  
o  Charles Hermite  ( 1822 – 1901)           
o Leopold Kronecker ( 1823 -1891 )
                      o Bernhard Rieman   ( 1826 -1866 )




 

o Richard Dedekind                     ( 1831 – 1916 )



o George Cantor  ( 1845 – 1918 )  
Bild 1ο Felix Klein                     (1849-1925 ) 




o  Gregorio RicciCurbastro ( 1853 – 1925 )
o  Henry Poincarré  ( 1854 – 1912 )      
o  Giuseppe Peano   ( 1858 – 1932)      

20ος αιώνας

o David Hilbert                       ( 1862 – 1943 ) 





o Hermann Minkowski ( 1864- 1909 )     
o Jacques Hadamar  ( 1865- 1932 )     
o Bertrand Russel  ( 1872 – 1970 )
ο Κωνσταντίνος Καραθεοδωρή                                              (1875 – 1950 )
                           



o Godfrey H. Hardy                  ( 1877 – 1947 )   




o John Edensor Littlewood  ( 1885 – 1977 )

o Σρινιβάσα Ραμάνουτζαν                       ( 1887 – 1920 )




o Ludwig Wittgenstein ( 1889 – 1951 )
o Eugene Wigner  ( 1902- 1995 )
o John von Neumann  ( 1903-1957 )
o Andrei Nikolaevich Kolmogorov   ( 1903 – 1987 )
o Kurt Gödel       ( 1906 - 1978 )
o André Weile ( 1906 – 1998 )
o Paul Erdos    ( 1913 – 1996 )
o Alan Turing  ( 1912 – 1954 )                   
ο Martin Gardner  1914
                        
o Atle Selberg                       1917  



o Roger Penrose
   
         
                   ο Enrico Bombieri  1946  



ο Alain Connes                                    1947



                    
                          
o Andrew Wiles                          1953